Name - Bharti Sharma. Class- B.Sc. 2nd Year. Semester- Fourth Subject- Statistical Physics

Month	Week	Topic
March	2	Unit 1- Introduction, Microscopic and Macroscopic systems, events-mutually exclusive, dependent and independent. Probability, statistical probability
	4	A- priori Probability and relation between them, probability theorems, some probability considerations, combinations possessing maximum probability
		combination possessing minimum probability, Tossing of 2,3 and any number of Coins,
	3	Permutations and combinations, distributions of N (for N= 2,3,4) distinguishable and indistinguishable particles in two boxes of equal size,
		Micro and Macro states, Thermodynamical probability, Constraints and Accessible states,
		Statistical fluctuations,
	4	general distribution of distinguishable particles in compartments of different sizes
		Condition of equilibrium between two systems in thermal contact β parameter, Entropy and Probability (Boltzman's relation).
		Revision and Numerical Problems
April	1	Unit 2- Postulates of statistical physics, Phase space, Division of Phase space into cells.
		three kinds of statistics, basic approach in three statistics.
		M. B. statistics applied to an ideal gas in equilibrium- energy distribution law (including evaluation of σ and β), Assignment.
	2	speed distribution law & velocity distribution law.
		Expression for average speed, r.m.s. speed, average velocity,
		r. m. s. velocity, most probable energy & mean energy for Maxwellian distribution.
	3	Revision and Numericals

Name - Bharti Sharma. Class- B.Sc. 2nd Year. Semester- Fourth Subject- Statistical Physics

Month	Week	Topic
	,	Unit 3-Need for Quantum Statistics: Bose-Einstein energy distribution law.
		Application of B.E. statistics to Planck's radiation law B.E. gas,
	4	Degeneracy and B.E. Condensation,
7		Fermi- Dirac energy distribution law, F.D. gas and Degeneracy
		Fermi energy and Fermi temperature, Fermi Dirac energy distribution law,
	5	Fermi Dirac gas and degeneracy, Fermi energy and Fermi temperature,
		Fermi Dirac energy distribution law for electron gas in metals,
		Zero point energy, Zero point pressure and average speed (at 0 K) of electron gas.
May	1	Specific heat anomaly of metals and its solution. M.B. distribution as a limiting case of B.E. and F.D. distributions. Test.
		Comparison of three statistics. Revision and Numericals.
		Unit 4- Dulong and Petit law,
	2	Derivation of Dulong and Petit law from classical physics.
		Specific heat at low temperature, Einstein theory of specific heat
		Criticism of Einstein theory, Debye model of specific heat of solids,
	3	success and shortcomings of Debye theory, comparison of Einstein and Debye theories.
	4	Revision and Numericals.
		Revision of Unit 1,2,3.

Name - Bharti Sharma. Class- B.Sc. 2nd Year.

Semester- Fourth Subject- Optics II

Month	Week	Topic
March	2	Unit 1-Polarization: Polarisation by reflection, refraction and scattering
		Malus Law, Phenomenon of double refraction,
		Huygen's wave theory of double refraction (Normal and oblique incidence),
	3	Analysis of polarized Light. Nicol prism,
		Quarter wave plate and half wave plate,
		production and detection of (i) Plane polarized light (ii) Circularly polarized light and (iii) Elliptically polarized light.
	4	Optical activity, Fresnel's theory of optical rotation, Specific rotation,
		Polarimeters (half shade and Biquartz).
April	1	Unit 2- Fourier theorem and Fourier series, Test
		evaluation of Fourier coefficient, importance and limitations of Fourier theorem, even and odd functions
		Fourier series of functions f(x) between (i) 0 to 2pi, (ii) -pi to pi, (iii) 0 to pi, (iv) -L to L,
	2	complex form of Fourier series, Application of Fourier theorem for analysis of complex waves:
		solution of triangular and rectangular waves , half and full wave rectifier outputs,
		Parseval identity for Fourier Series, Fourier integrals.
	3	Revision and Numericals
		Fourier transforms and its properties,
		Application of Fourier transform (i) for evaluation of integrals,
	4	Solution of ordinary differential equations, (iii) to the following function, Revision and Numericals.

9

Name - Bharti Sharma. Class- B.Sc. 2nd Year.

Semester- Fourth Subject- Optics II

Month	Week	Topic
		Unit 3-Matrix methods in paraxial optics,
	5	effects of translation and refraction,
May	1	derivation of thin lens. Assignment.
		thick lens formulae, unit plane
		nodal planes, system of thin lens
		Revision and Numericals
	2	Unit 4-Chromatic, spherical, coma, astigmatism
		distortion aberrations and their remedies
		Optical fiber, Critical angle of propagation,
	3	Mode of Propagation, Acceptance angle, Fractional refractive index change,
		Numerical aperture, Types of optics fiber, Normalized frequency
		Pulse dispersion, Attenuation,
	4	Applications, Fiber optic Communication, Advantages.
		Revision and. Numerical Problems
		Revision Unit 1,2,3

Lesson Plan

Govt. College, Rania

Name of the Assistant Professor:-Dr. Manoj Kumar Class and Section:-B.Sc. II (NM)/IV Semester Session-2020-21

Subject: - Chemistry

Week	Topics
1	Physical Chemistry
	Chapter-Thermodynamics
	 Limitation of first law of thermodynamics
	Carnot Cycle
	Carnot Cycle, Carnot Theorem and Numerical problems
	 Entropy change during reversible and irreversible process and clausius inequality
	Entropy Change for an ideal gas with change in P.V& T
	 Entropy change during phase transition and numerical problems, Entropy change during mixing of ideal gases
	 Work function and Gibbs free energy, Change in work function and Gibbs free energy with T & P
2	Criteria for spontaneity of a process
	Gibbs Helmholtz equation and numerical problems Nernst heat theorem and third law of thermodynamics
	 Application of third law of thermodynamics-absolute entropy calculation Residual entropy
	Chapter-Electrochemistry
	o Galvanic cells -introduction, Electrolytic cell
	Electrode potential and e.m.f. measurements, Standard cells
	Reversible cells and irreversible cells
3	Reversible cells Types
	Calculation of thermodynamic quantities of cell reactions, Standard
	hydrogen electrode and its uses
	Electrochemical Series and its applications
	 Nernst equation for e.m.f.cell and numerical problems related to Nernst equation
	 Calculation of equilibrium constant of cell reaction Concentration cells- introduction
	o e.m.f. of electrode conc. Without transference
1	o e.m.f. of cells With transference, Liquid junction potential
	Applications of e.mf. measurements
	Applications of e.mf. measurements
	Potentiometric titrations-principle and examples
	Inorganic Chemistry
	Chapter-Chemistry of f-Block elements
	Lanthanides: Electronic structure, oxidation states
	o magnetic properties, complex formation, colour of lanthanides

Week	Topics
5	Atomic & ionic radii and lanthanide contraction and it consequences
	o occurrence, separation tech. of lanthanides,
	 Lanthanide compounds, Actinides: General characteristics of actinides
	o chemistry of separation of Np, Pu and Am from uranium
	 Comparison of properties of Lanthanides and actinides with transition elements.
	Chapter- Theory of Qualitative and Quantitative Analysis
	Basic of analysis- common ion effect, solubility product etc.
6	o chemistry of identification of acid radicals
	o chemistry of identification of acid gadicals
	o chemistry of identification of acid radicals in typical combination
	o chemistry of identification of acid radicals in typical combination
	o chemistry of identification of Basic radicals
	o chemistry of identification of Basic radicals
7	o chemistry of identification of Basic radicals,
	Theory of precipitation, co-precipitation, post
	o precipitation
	Organic Chemistry
	Chapter -IR spectroscopy
	o Basics of Infrared (IR) absorption spectroscopy, different types of
	Molecular vibrations
	 Hooke 's law, selection rules, intensity and position of IR bands,
	 Measurement of IR spectrum, fingerprint region, characteristic absorptions of various functional groups and interpretation of IR spectra of simple organic compounds.
	 Measurement of IR spectrum, fingerprint region, characteristic absorptions of various functional groups and interpretation of IR spectra of simple organic compounds.
8	 Applications of IR spectroscopy in structure elucidation of simple Organic compounds.
	Chapter- Amines
	Structure and nomenclature of amines, physical properties.
	 Separation of a mixture of primary, secondary and tertiary amines
	Basicity of amines, Structural features affecting basicity of amines.
	 Preparation of alkyl and aryl amines (reduction of nitro compounds.
	nitriles, reductive lamination of aldehyde and kenotic compounds

Week	Topics
9	Chemical Properties of Amines, Electrophilic aromatic substitution in aromatic amines
	Electrophilic aromatic substitution in aromatic amines
	Reaction of amines with nitrous acid.
	 Diazonium Salts-Mechanism of diazotisation, structure of benzene diazonium chloride,
	Replacement of diazo group by H, OH, F, Cl, Br, I, NO ₂ and CN groups, reduction of diazonium sa lts to hyra zines
	 Coupling reaction and its synthetic application.
10	Carboxylic Acids & Acid Derivatives –Nomenclature of Carboxylic acids, structure and bonding, physical properties,
	 Acidity of carboxylic acids, effects of substituents on acid strength.
	Preparation of carboxylic acids
	Reactions of carboxylic acids. Hell-Volhard-Zelinsky reaction
	. o Mechanism of decarboxylation reactions
	Relative stability of acyl derivatives. Physical properties, Inter-conversion of acid derivatives by nucleophilic acyl substitution.